

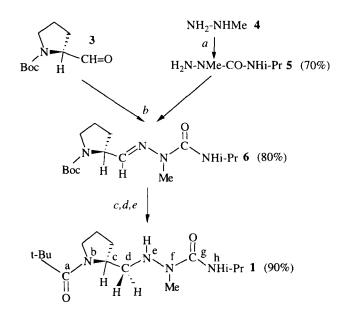
PII: S0040-4039(97)00410-3

## The non Protonable Reduced Aza-Peptide Fragment

Régis Vanderesse\*, Laurent David, Vincent Grand, Michel Marraud

Laboratoire de Chimie Physique Macromoléculaire, Unité de Recherche Associée au CNRS ENSIC-INPL, BP 451, 54001 Nancy, France

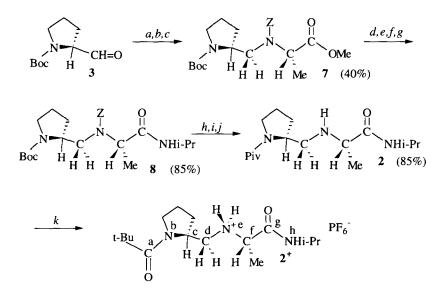
## Jean Paul Mangeot and André Aubry


Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, Unité de Recherche Associée au CNRS Université Henri Poincaré, BP 239, 54506 Vandœuvre, France

**Abstract:** The reduced aza-peptide fragment  $(C^{\alpha}-CH_2-NH-N^{\alpha}R-CO-NH-C^{\alpha})$  is obtained by reduction of the semicarbazone moiety  $(C^{\alpha}-CH=N-N^{\alpha}R-CO-NH-C^{\alpha})$  in an imino aza-peptide. It differs from the aminomethylene link  $(C^{\alpha}-CH_2-NH-C^{\alpha}HR-CO-NH-C^{\alpha})$  found in the reduced peptides by the absence of protonation in water in the 2-12 pH range. The reduced aza-analogue of the Pro-Ala dipeptide has been studied in solution by <sup>1</sup>H-NMR and IR spectroscopy, and in the solid state by X-ray diffraction. Its structure is quite similar to that of the neutral reduced dipeptide analogue in solution. @ 1997 Elsevier Science Ltd.

Among the mimics of the  $C(OH)_2$ -NH transient state of the amide bond during enzymatic cleavage, the so-called reduced amide bond, or aminomethylene moiety CH<sub>2</sub>-NH, is frequently used for the design of peptidase inhibitors, probably because of its easy introduction in a peptide chain.<sup>1,2</sup> However, the question arises about the actual chemical nature of the reduced amide bond: there is some NMR indication that the pKa of a protonated reduced amide bond is near neutrality,<sup>3,4</sup> and the ionic or neutral form of its amine function at the physiological pH is then questionable and depends upon the local environment.

Taking into account that the pKa  $(3.53)^5$  of the protonated semicarbazide is much lower than that of the CH<sub>2</sub>-N<sup>+</sup>H<sub>2</sub>-CH moiety, it was worth to investigate the structural properties of the semicarbazide link C<sup> $\alpha$ </sup>-CH<sub>2</sub>-NH-N<sup> $\alpha$ </sup>R-CO-NH-C<sup> $\alpha$ </sup>, deriving from the semicarbazone fragment C<sup> $\alpha$ </sup>-CH=N-N<sup> $\alpha$ </sup>R-CO-NH-C<sup> $\alpha$ </sup> in imino azapeptides,<sup>6</sup> and giving access to a new family of pseudopeptides that we propose to call reduced aza-peptides. The structure of the semicarbazone reveals to be rigidly cis-planar with a 5-membered pseudocycle closed by a N-H···N hydrogen bond,<sup>6</sup> but reduction of the imine bond is expected to restore some conformational flexibility. We have prepared the reduced aza-dipeptide 1 (Scheme 1), and compared its conformational properties to that of the reduced dipeptide analogue 2 (Scheme 2). Both have been submitted to IR and <sup>1</sup>H-NMR experiments in solution and have grown single crystals which have been studied by X-ray diffraction.


Derivative 1 (Scheme 1) was synthesized by catalytic hydrogenation of the corresponding imino azadipeptide<sup>6</sup> with in addition Boc to Piv exchange in order to prevent cis conformation of the Pro-preceding amide bond.<sup>7</sup> The reduced dipeptide 2 (Scheme 2) was prepared by one-pot reductive amination,<sup>1,2</sup> using the temporary Z-protection of the amino group in order to make the chromatographic purification easier, and to avoid side reactions during further acylation steps. Saponification of the ester 7 and introduction of the isopropylamide in 8 by the mixed anhydride method, followed by Boc to Piv exchange and Z-hydrogenolysis gave 2 in the neutral form. The protonated form  $2^+$  was associated with the  $PF_6^-$  anion in order to minimize ammonium-anion interactions.<sup>8</sup> All derivatives are chromatographically pure and give satisfactory <sup>1</sup>H-NMR data.



Scheme 1.9 *a*: i-PrN=C=O / THF / reflux / overnight; *b*: EtOH / AcONa / r.t. / overnight; *c*: TFA / r.t. / 15 min.; *d*: PivCl / NEt(i-Pr)<sub>2</sub> / DCM / 0°C; *e*: H<sub>2</sub> / Pd-C10% / MeOH - AcOH / r.t. / 96h..

The <sup>1</sup>H-NMR spectrum of **1** in water is practically invariant in the 2-12 pH range whereas the resonances of **2** are significantly shifted at about pH 6-8. It ensues that the semicarbazide group in **1** is not protonated under the physiological conditions. On the contrary, the protonated reduced amide bond  $C^{d}H_{2}$ -NeH<sub>2</sub>+ in **2**+ presents a pKa value of about 7, and protonation of the reduced amide link in aza-peptide analogues has been shown to affect considerably the conformational properties.<sup>4,10,11</sup>

The crystal stucture of derivatives 1 and 2 have been solved by X-ray diffraction.<sup>12</sup> Molecule 1 ( $\phi_1$ ,  $\psi_1$ ,  $\omega$ ,  $\phi_2$ ,  $\psi_2 = -78^\circ$ , 172°, -70°, 128°, -7°) exhibits a rather extended conformation in which the C-terminal N<sup>h</sup>H is hydrogen bonded to the N<sup>e</sup> nitrogen (N<sup>e...</sup>N<sup>h</sup> = 2.62 Å) (Fig. 1). Molecule 2 ( $\phi_1$ ,  $\psi_1$ ,  $\omega$ ,  $\phi_2$ ,  $\psi_2 = -81^\circ$ , 159°, -79°, -70°, 103°) is folded by an intramolecular hydrogen bond between the C-terminal N<sup>h</sup>H and the C<sup>a</sup>O carbonyl (N<sup>h...</sup>O = 2.94 Å), in a similar way to the β-turn structure in the peptides (Fig. 1).<sup>13</sup> The N<sup>e</sup>H interacts with the AzAla-C<sup>g</sup>O in 1 (N<sup>e...</sup>O = 3.02 Å), and with the Piv-C<sup>a</sup>O in 2 (N<sup>e...</sup>O = 3.14 Å) of a neighbour molecule. In both cases, its nitrogen atom is pyramidal with the same R-chirality.



Scheme 2.<sup>9</sup> *a*: HCl. H-Ala-OMe / MeOH:AcOH (99:1) with molecular sieves 3-4 Å / r.t. / 1 h; *b*: NaBH<sub>3</sub>CN / r.t.; *c*: ZCl / NMM / THF / -10°C; *d*: NaOH 1N / acetone / 0°C / 2h; *e*: HCl 1N / r.t.; *f*: i-BuOCOCl / NMM / CHCl<sub>3</sub> / -15°C; *g*: iPr-NH<sub>2</sub> / NMM / CHCl<sub>3</sub> / -10°C; *h*: TFA / r.t. / 15 min.; *i*: PivCl / NMM / DCM / 0°C; *j*: H<sub>2</sub> / Pd-C 5% / MeOH / r.t.; *k*: Et<sub>2</sub>O<sup>+</sup>H.PF<sub>6</sub><sup>-</sup> / H<sub>2</sub>O / r.t.

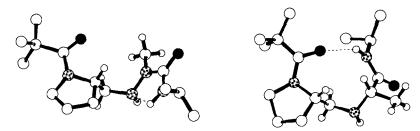



Fig. 1. Crystal structures of the reduced aza-dipeptide 1 (left) and the neutral reduced dipeptide 2 (right).

For both neutral pseudodipeptides, the small solvent sensitivity of the C-terminal amide N<sup>h</sup>H resonance (0.11 ppm (1) and -0.22 ppm (2) going from CDCl<sub>3</sub> to DMSO-d<sub>6</sub>), and the low amide N<sup>h</sup>-H stretching frequency (3402 cm<sup>-1</sup> (1) and 3350 cm<sup>-1</sup> (2) in DCM) are typical of a hydrogen bonded site. In DMSO, the amide N<sup>h</sup>-H absorption is shifted down to 3280 cm<sup>-1</sup>, a value denoting a totally solvated state. Moreover and surprisingly, the Piv C<sup>a</sup>=O frequency is practically independent of the solvated or non solvated state of the amide N<sup>h</sup>H, indicating that the Piv carbonyl is not engaged in any intramolecular interaction. Therefore, the only possible partner of the amide N<sup>h</sup>H is the N<sup>e</sup>H amine nitrogen of the reduced amide link. The resulting N<sup>h</sup>-H··N<sup>e</sup> interaction closing a 5-membered pseudocycle is present in the crystal structures of 1 and of the reduced peptide Boc-Prow[CH<sub>2</sub>-NH]Leu-Gly-NH<sub>2</sub>.<sup>14</sup>

As expected, protonation induces noticeable changes in the 2+ IR data. The Piv C<sup>a</sup>=O is engaged in a strong interaction denoted by its very low stretching frequency (1588 cm<sup>-1</sup> in DCM), and the very broad and composite absorption near 2800 cm<sup>-1</sup> is typical of a bonded ammonium<sup>7</sup> while the C-terminal N<sup>h</sup>H is still

partly protected from solvation (resonance shift of 0.46 ppm when going from CDCl<sub>3</sub> to DMSO-d<sub>6</sub>). We therefore might conclude that on one side the Piv carbonyl and the N<sup>e</sup>H<sub>2</sub><sup>+</sup> in **2**<sup>+</sup> are intramolecularly hydrogen bonded forming a  $\gamma$ -like turn, and that on the other side part of the molecules also present an amide N<sup>h</sup>H to Piv C<sup>a</sup>O interaction resulting in a  $\beta$ -like turn.<sup>13</sup>

The amine pKa of the protonated semicarbazide moiety is much lower<sup>5</sup> than that of the aminomethylene moiety in reduced peptides, so that the former is not protonated at the physiological pH. Their structure being similar structures, the semicarbazide moiety appears as a possible substitute for the cognate reduced sequence for the design of a neutral mimic of the amide hydrolysis transient state.

Acknowledgements: The authors thank D. Bayeul and A. Vicherat for technical assistance.

## **References** and Notes

- 1. Coy, D. H.; Hacart, S. J.; Sasaki, Y. Tetrahedron 1988, 44, 835-841.
- Martinez, J.; Bali, J. P.; Rodriguez, M.; Castro, B.; Magous, R.; Laur, J.; Lignon, M.F. J. Med. Chem. 1985, 28, 1874-1879.
- 3. Aumelas, A.; Rodriguez, M.; Heitz, A.; Castro, B.; Martinez, J. Int. J. Peptide Protein Res. 1987, 30, 596-604.
- 4. Ma, S.; Spatola, A. F. Int. J. Peptide Protein Res. 1993, 41, 204-206.
- 5. Goddard, D.R.; Lodam, B.D.; Ajavi, S.O.; Campell, M.J. (A) 1969, 506-512.
- 6. Limal, D.; Grand, V.; Vanderesse, R.; Marraud, M. Tetrahedron Lett. 1994, 22, 3711-3714.
- 7. Nishihara, H.; Nishihara, K.; Uefuji, T.; Sakota, N. Bull. Chem. Soc. Jpn 1975, 48, 553-555.
- 8. Moreno-Gonzalez, E.; Marraud, M.; Néel, J. C.R. Acad. Sc. 1977, 284, 203-206.
- The following abbreviations are used: Ac, acetyl; Boc, *tert*-butyloxycarbonyl; DCM, dichloromethane; DMSO, dimethylsulfoxide; DMSO-d<sub>6</sub>, hexadeuterated dimethylsulfoxide; NMM, N-methylmorpholine; Piv, pivalyl; TFA, trifluoroacetic acid; THF, tetrahydrofuran; Z, benzyloxycarbonyl.
- 10. Grand, V.; Aubry, A.; Dupont, V.; Vicherat, A; Marraud, M. J. Peptide Sci. 1997, 2, 381-391.
- 11. Geyer, A.; Müller, G.; Kessler, H. J. Am. Chem. Soc. 1994, 116, 7735-7743.
- 12 Single crystals of 1 and 2 have been obtained by slow cooling of an EtOH / AcOEt solution. 1: P2<sub>1</sub>/c; a = 10.083(2)Å, b = 18.553(1)Å, c = 10.282(1)Å,  $\beta$  = 111.19(2)°; Z = 4; d<sub>calc.</sub> = 1.11 g.cm<sup>-3</sup>; 3632 reflections; R = 0.073. 2: P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>; a = 9.337(1)Å, b = 9.458(1)Å, c = 20.425(3)Å; Z = 4; d<sub>calc.</sub> = 1.10 g.cm<sup>-3</sup>; 1785 reflections; R = 0.055. The reduced amide in 1 and 2 have quite similar dimensions (C<sup>d</sup>H<sub>2</sub>-N<sup>e</sup> = 1.46 Å), but the α-nitrogen (N<sup>f</sup>) in 1 is nearly planar whereas the α-carbon (C<sup>f</sup>) in 2 is tetragonal. The N<sup>f</sup>-Me bond in 1 (1.43 Å) is shorter than the C<sup>f</sup>-Me bond in 2 (1.53 Å). Due to the absence of electronic conjugation, the C<sup>d</sup>H<sub>2</sub>-N<sup>e</sup> in 1 and 2 is 0.14 Å longer than the standard peptide bond one,<sup>15</sup> and allows a staggered conformation instead of the trans planar arrangement.
- 13. Rose, G. D.; Gierasch, L. M.; Smith, J. A. Adv. Protein Chem. 1985, 37, 1-109.
- 14. Toniolo, C.; Valle, G.; Crisma, M.; Kaltenbronn, J. S.; Repine, J. T.; Van Binst, G.; Elseviers, M.; Tourwé, D. Peptide Res. 1989, 2, 332-337.
- Benedetti, E. Structure and Conformation of Peptides as Determined by X-Ray Crystallography. In Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Weinstein, B. Ed.; Marcel Dekker, Inc.: New York and Basel, 1983; Vol. 6, pp. 105-184.

(Received in France 23 January 1997; accepted 27 February 1997)